4-λ InGaAsP-Si distributed feedback evanescent lasers with varying silicon waveguide width
نویسندگان
چکیده
منابع مشابه
Electrically pumped hybrid evanescent Si/InGaAsP lasers.
Hybrid Si/III-V, Fabry-Perot evanescent lasers are demonstrated, utilizing InGaAsP as the III-V gain material for the first time to our knowledge. The lasing threshold current of 300-mum-long devices was as low as 24 mA, with a maximal single facet output power of 4.2 mW at 15 degrees C. Longer devices achieved a maximal single facet output power as high as 12.7 mW, a single facet slope efficie...
متن کاملMode-locked silicon evanescent lasers.
We demonstrate electrically pumped lasers on silicon that produce pulses at repetition rates up to 40 GHz. The mode locked lasers generate 4 ps pulses with low jitter and extinction ratios above 18 dB, making them suitable for data and telecommunication transmitters and for clock generation and distribution. Results of both passive and hybrid mode locking are discussed. This type of device coul...
متن کاملA hybrid AlGaInAs-silicon evanescent waveguide photodetector.
We report a waveguide photodetector utilizing a hybrid waveguide structure consisting of AlGaInAs quantum wells bonded to a silicon waveguide. The light in the hybrid waveguide is absorbed by the AlGaInAs quantum wells under reverse bias. The photodetector has a fiber coupled responsivity of 0.31 A/W with an internal quantum efficiency of 90 % over the 1.5 mum wavelength range. This photodetect...
متن کاملHeterogeneously Integrated Distributed Feedback Quantum Cascade Lasers on Silicon
Silicon integration of mid-infrared (MIR) photonic devices promises to enable low-cost, compact sensing and detection capabilities that are compatible with existing silicon photonic and silicon electronic technologies. Heterogeneous integration by bonding III-V wafers to silicon waveguides has been employed previously to build integrated diode lasers for wavelengths from 1310 to 2010 nm. Recent...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Optics Express
سال: 2014
ISSN: 1094-4087
DOI: 10.1364/oe.22.005448